

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Visualizing Fouling Layer in Membrane Bioreactor

Yu-Chuan Juang^a; Duu-Jong Lee^a; Juin-Yih Lai^b

^a Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan ^b R&D Center of Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan

Online publication date: 23 April 2010

To cite this Article Juang, Yu-Chuan , Lee, Duu-Jong and Lai, Juin-Yih(2010) 'Visualizing Fouling Layer in Membrane Bioreactor', *Separation Science and Technology*, 45: 7, 962 – 966

To link to this Article: DOI: 10.1080/01496391003666882

URL: <http://dx.doi.org/10.1080/01496391003666882>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Visualizing Fouling Layer in Membrane Bioreactor

Yu-Chuan Juang,¹ Duu-Jong Lee,¹ and Juin-Yih Lai²

¹Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan

²R&D Center of Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan

The membrane fouling layer in the combined aerobic granular membrane bioreactor (AGMBR) process and the conventional MBR process was probed in this study using the multiple staining and confocal laser scanning microscope (CLSM) technique. The fouling layer built up outside and inside the membrane was principally composed of live cells embedded in a matrix of proteins and polysaccharides. The fouling layer presented outside the membrane is noted denser in structure than that inside the membrane.

Keywords CLSM; fouling; hollow-fibre membrane; membrane bioreactor

INTRODUCTION

Smith et al. (1) reported on the combined use of membranes in biological wastewater treatment. The main advantage of using the membrane bioreactor (MBR) technology over using other conventional biological processes is to produce quality water from municipal wastewater for reuse, meeting the need for saving water, particularly in regions of water shortage. Yamamoto et al. (2) developed the first submerged type MBR that are in wide use today. Membrane fouling results in flux decline and fouling increases pressure drop across the membrane (3). Sridang et al. (4) analyzed the fouling potential of a membrane utilizing different module configurations and hydrodynamic environments. Seo et al. (5) determined that the hydrophobic fraction of organic compounds fouled the membrane more than did hydrophilic fraction. Jarusutthirak et al. (6) indicate that polysaccharide colloids accounted for most fouling of UF and NF membranes. Cho et al. (7) argued that polysaccharides and related substances are the principal foulants of UF and NF membranes. Rosenberger et al. (8) indicated the impact of soluble or colloidal fractions in organic substances, particularly polysaccharides, on membrane fouling, and thereby arguing for characterizing liquid-phase compositions when

monitoring the membrane process performance. Ramesh et al. (9,10) revealed the potentials of individual components in EPS to foul the MBR membrane.

Aerobic granules are considered to be a special case of biofilm composed of self-immobilized cells. The first patent was granted by Heijnen and van Loosdrecht (11). de Kreuk et al. (12) and Adav et al. (13) provided comments on the state of the art for the aerobic granulation process. Compact structured, biologically efficient aerobic sludge granules with wide diverse microbial species and excellent settling capabilities have been developed in sequencing batch reactors (SBR) (14–25). Tay et al. (26) proposed a new process, called the aerobic granular sludge membrane bioreactor (AGSBR), that combined MBR and the aerobic granule technology for wastewater treatment. The system indicated excellent membrane permeability with aerobic granules in a four months long operation compared with the conventional MBR, and it was claimed that low membrane fouling was induced by the high strength of the aerobic granules in the surface cake. Jun et al. (27) also noted enhanced filterability for the aerobic granular membrane over the conventional biofloc systems. The authors concluded that the main components for fouling are proteins and polysaccharides in water. Thanh et al. (28) utilized a baffled membrane filtration unit as the post-treatment unit of an aerobic granular sludge process. These authors noted that the soluble polysaccharides content increases with increasing organic loadings, and contributes most of the membrane resistance during the filtration of the effluent from the aerobic granular process. Wang et al. (29) developed their aerobic granular sludge membrane bioreactor (GMBR), which showed good organics removal (TOC removal > 84.7%) and simultaneous nitrification and denitrification (SND) performances for synthesized wastewater.

Fast filtration with minimum irreversible membrane fouling is desired (30–37). The fouling layer develops on the membrane surface of MBR and AGMBR for raising trans-membrane pressures. For the first time Juang et al. (38) provided direct observation of an external fouling layer which occurred on a hollow-fiber membrane of the AGMBR. This work demonstrated the formation of not

Received 1 November 2009; accepted 31 December 2009.

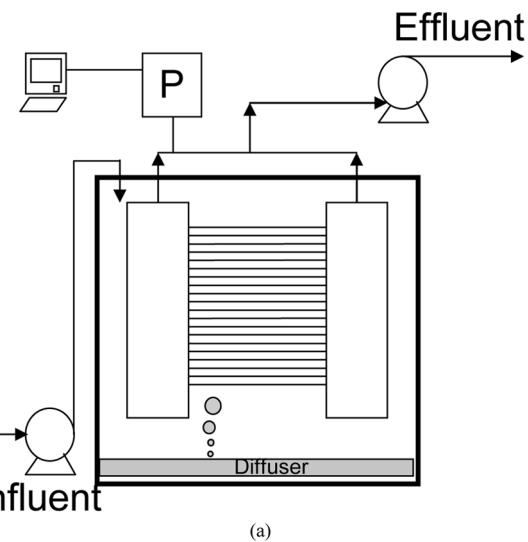
Address correspondence to Duu-Jong Lee, Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan. Tel.: +886-2-33663028; Fax: +886-2-23623040. E-mail: djlee@ntu.edu.tw

only an external but also an internal fouling layer residing inside the membrane.

EXPERIMENTAL

Reactor and Operation

Aerobic granules were cultivated with the procedures described by Adav et al. (18). Stable granules formed in three weeks. The cultivated, mature granules were washed with pure water and then stored at 8°C for 60 days in reagent bottles containing synthetic wastewater with compositions the same as those used by Adav et al. (18) combined with 250 mg l⁻¹ phenol and 400 mg l⁻¹ peptone.


Two laboratory-scale MBR were utilized in the present study (Fig. 1(a)). The membrane module was made of poly-ethylene hollow-fiber membranes of 500 µm diameter and 0.4 µm pores, provided by Mitsubishi Rayon Co. (Tokyo, Japan). The specifically prepared membrane module had a working surface of 0.03 m². Coarse bubbles were produced below the membrane module at a flow rate of 31 min⁻¹.

A synthetic substrate with phenol as the sole carbon source was prepared with the following composition (g l⁻¹): pheol 2.5, NH₄Cl 1.0, K₂HPO₄ 8.25, KH₂PO₄ 6.75, and MgSO₄ · 7H₂O 0.65. The prepared substrate has the COD contribution of 3000 mg COD l⁻¹. The substrate was continuously fed at the bottom of the MBR at 1.2 ml min⁻¹. The effluent was drawn at an on-off mode of 15 min-15 min partition.

Staining and Fluorescent Tests

To probe the structure of the fouling layers, the present work employed the confocal laser scanning microscope (CLSM, OLYMPUS BX50) equipped with an image processor (OLYMPUS FV5 PSU) and an argon laser source to stimulate the fluorescence. The granule was imaged with a 10x objective with the software FLUOVIEW version 3.0. All probes were purchased from Molecular Probes (CA, USA). All primary antibodies were purchased from Abcam (Cambridge, UK) or Invitrogen (Carlsbad, USA).

SYTO 63 (20 µM) was used to stain the nucleic acid in granule, then the stained sample was placed on the shaker table for 30 min. EPS staining is followed by the multiple-labeling immunohistochemical tests. The α -amylase antibody ab6615 from rabbit, and the tyrosinase antibody ab53338 from sheep were dipped at 1:20 dilution onto the sections and were incubated for 2 hr at 37°C. After removing residual primary antibody solution, the sections were incubated with 2 mg ml⁻¹ Alexa Fluor® 568 goat anti-rabbit IgG Cy3-conjugated A11031 antibody, and 2 mg ml⁻¹ Alexa Fluor® 633 goat anti-sheep IgG Cy5-conjugated A21071 antibody at 1:50 dilution for 40 min at 37°C. Finally the stained section was washed twice using the 1% v/v Tween 20 PBS solution.

(a)

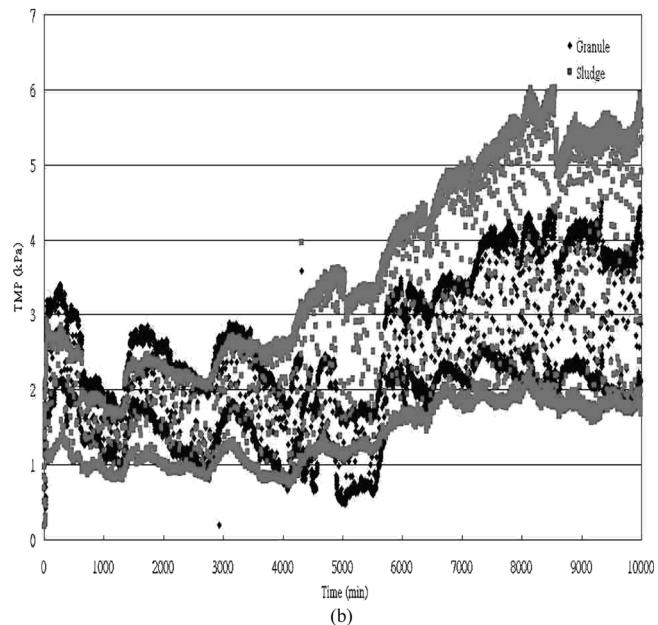


FIG. 1. (a) Schematics of the testing MBR. (b) Trans-membrane pressure of MBR and AGMBR as a function of testing time.

RESULTS AND DISCUSSION

Reactor Performance

The COD and TOC data in the effluents and/or supernatants for AGMBR and MBR tests revealed that both reactors performed satisfactorily over the testing time. The removal of COD and TOC was mostly >95%.

Figure 1(b) shows the time courses of trans-membrane pressures (TMP) for AGMBR and MBR tests. The AGMBR was seeded with the cultivated granules while the MBR was seeded with activated sludge from a local wastewater treatment plant. The TMP for MBR started to increase at $t > 4000$ min, with the peak pressure being raised to about 4 kPa at $t > 6000$ min. Regular backwashing

could almost completely restore the membrane flux. For AGMBR, the TMP could keep low until $t = 5700$ min. Afterwards the peak TMP rapidly increased to >5 kPa. Hence, the AGMBR delays the occurrence of membrane fouling when compared with the MBR tests.

Fouling Layer Visualization

Figure 2(a) presents the fluorescent staining results of the single fiber positioned close at the central regime of the AGMBR at the end of test. The fiber was physically washed. The surface of the membrane was relatively clean compared with the mass of “sludging” noted in Juang et al. (38). Conversely, an internal biofilm was noted. The imaging results for MBR revealed the presence of similar internal biofilms (figure not shown for brevity). Parallel tests demonstrated that these internal biofilm could not be effectively removed by either physical or chemical cleaning.

Figures 2(b)–(d) presents the magnified, fluorescent staining results of the external and internal biofilms noted in Fig. 2(a). A very heterogeneous layer of thickness of $30\ \mu\text{m}$ was revealed. Redundant cells were noticeable embedding in a matrix, with a layer of tyrosinase surrounding the said cells. The internal biofilm was looser in packing and thinner than that for the external biofilm layer. The presence of tyrosinase activity correlated with the high phenol removal detected in the present MBR system. Additionally, the quantity of α -amylase was negligibly detected. Restated, the degradation of polysaccharides was not activated in the studied reactors.

Penetration of live cells through the membrane should contribute to the occurrence of the internal biofilm layer. The AGMBR retains most live cells with the biological granules in suspension, thereby providing less chance for cell penetration. Such an observation may correlate with the delayed occurrence of TMP rise as noted in Fig. 1.

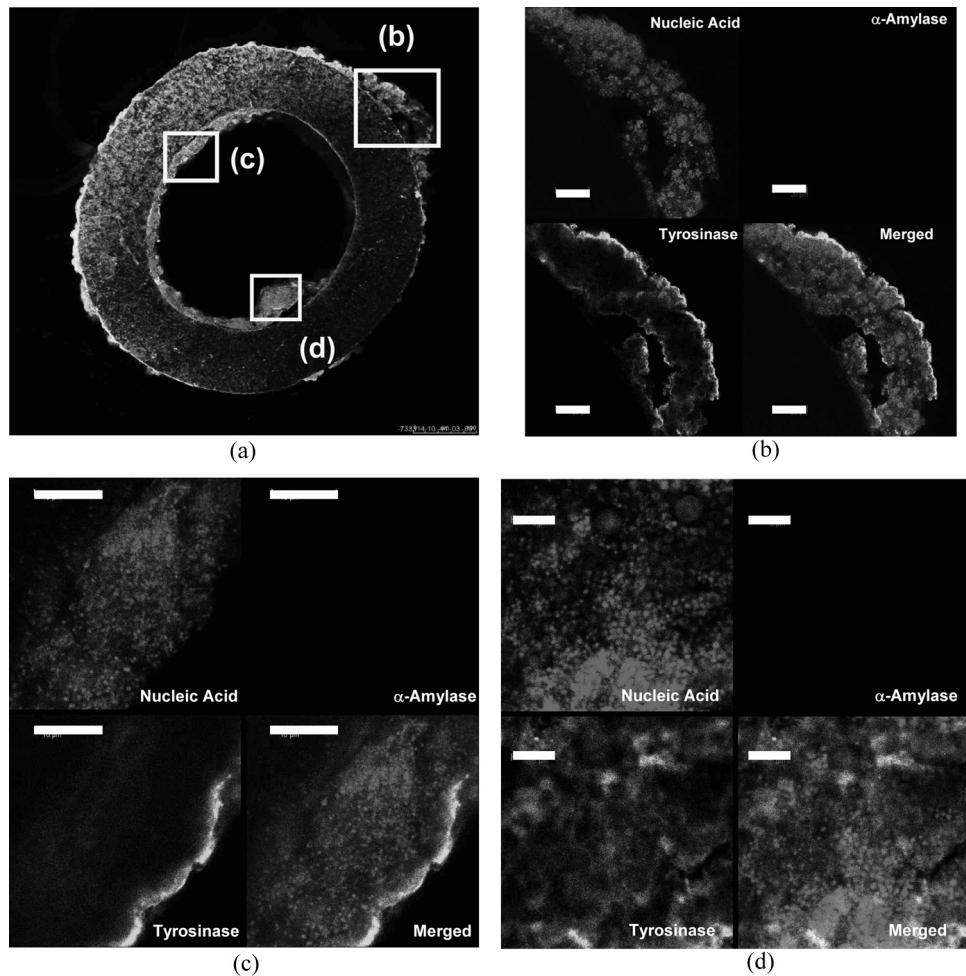


FIG. 2. The CLSM images for the fouling layers on single hollow-fiber membrane in AGMBR. (a) CLSM image of the sectioned membrane fibre. (b)–(d) are the magnified images of those marked in (a). Bar = $10\ \mu\text{m}$. Envelope layers in (b) and (c) and cloud-like in (d): tyrosinase; light patches in background: alpha-amylase; dots: cells. Bottom and right: combined image.

CONCLUSIONS

The AGMBR and MBR were tested with phenol-containing synthetic wastewater with TMP data probed over time. Both external and internal biofilms were developed on the membranes. The CLSM images on a single fiber revealed the presence of very heterogeneous layers of thickness of 30 μm with redundant cells. These cells were embedded in a matrix, with a layer of tyrosinase surrounding them. The internal biofilm was looser in packing and thinner than that for the external biofilm layer. Very likely both external and internal biofilm developments determined the membrane permeability in MBR operation.

ACKNOWLEDGEMENT

This project is financially supported by the Water Resources Agency (WRA) of the Ministry of Economic Affairs (MOEA), Taiwan, The Republic of China (MOEA/WRA0990004).

REFERENCES

- Smith, K.L.; Di Gregorio, D.; Talcott, R.M. (1969). The use of ultrafiltration membrane for activated sludge separation. *Proc. 24th Annual Purdue Industrial Waste Conf.*, Purdue Univ., 1300–1310.
- Yamamoto, K.; Hiasa, M.; Mahmood, T.; Matsuo, T. (1989) Direct solid-liquid separation using hollow fibre membrane in an activated sludge aeration tank. *Water Sci. Technol.*, 24: 43–54.
- Chen, J.H.; Hwang, X.; Lee, D.J. (2008) Study on bisphenol A removal by a membrane bioreactor. *Process Biochem.*, 43: 451–456.
- Sridang, P.C.; Heran, M.; Grasmick, A. (2005) Influence of module configuration and hydrodynamics in water clarification by immersed membrane systems. *Water Sci. Technol.*, 51: 135–142.
- Seo, G.T.; Jang, S.W.; Lee, S.H.; Yoon, C.H. (2005) The fouling characterization and control in the high concentration PAC membrane bioreactor HCPAC-MBR. *Water Sci Technol.*, 51: 77–84.
- Jarusutthirak, C.; Amy, G.; Croue, J.P. (2002) Fouling characteristics of wastewater effluent organic matter (EfOM) isolated on NF and UF membranes. *Desalination*, 145: 247–255.
- Cho, J.; Amy, G.; Pellegrino, J. (1999) Membrane filtration of natural organic matter: Internal comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes. *Water Res.*, 33: 2517–2526.
- Rosenberger, S.; Evenblij, H.; te Poele, S.; Wintgens, T.; Laabs, C. (2005) The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes-six case studies of different European research groups. *J. Membr. Sci.*, 263: 113–126.
- Ramesh, A.; Lee, D.J.; Wang, M.L.; Hsu, J.P.; Juang, R.S.; Hwang, K.J.; Liu, J.C. (2006) Biofouling in membrane bioreactor. *Separ. Sci. Technol.*, 41: 1345–1370.
- Ramesh, A.; Lee, D.J.; Lai, J.Y. (2007) Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge. *Appl. Microbiol. Biotechnol.*, 74: 699–707.
- Heijnen, J.J.; van Loosdrecht, M.C.M. (1998) Method for acquiring grain-shaped growth of a microorganism in a reactor. European patent EP0826639.
- de Kreuk, M.K.; Kishida, N.; van Loosdrecht, M.C.M. (2007) Aerobic granular sludge-state of the art. *Water Sci. Technol.*, 55: 75–81.
- Adav, S.S.; Lee, D.J.; Show, J.Y.; Tay, J.H. (2008) Aerobic granular sludge: Recent advances. *Biotechnol. Adv.*, 26: 411–423.
- Morgenroth, E.; Sherden, T.; van Loosdrecht, M.C.M.; Heijnen, J.J.; Wilderer, P.A. (1997) Aerobic granular sludge in a sequencing batch reactor. *Water Res.*, 31: 3191–3194.
- Beun, J.J.; Hendriks, A.; van Loosdrecht, M.C.M.; Morgenroth, E.; Wilderer, P.A.; Heijnen, J.J. Aerobic granulation in a sequencing batch reactor. *Water Res.*, 33: 2283–2290.
- Tay, J.H.; Liu, Q.S.; Liu, Y. (2001) Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. *J. Appl. Microbiol.*, 91: 168–175.
- Adav, S.S.; Chen, M.Y.; Lee, D.J.; Ren, N.Q. (2007) Degradation of phenol by *Acinetobacter* strain isolated from aerobic granules. *Chemosphere*, 67: 1566–1572.
- Adav, S.S.; Chen, M.Y.; Lee, D.J.; Ren, N.Q. (2007) Degradation of phenol by aerobic granules and isolated yeast *Candida tropicalis*. *Biotechnol. Bioeng.*, 96: 844–852.
- Adav, S.S.; Lee, D.J.; Lai, J.Y. (2007) Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances. *Appl. Microbiol. Biotechnol.*, 77: 175–182.
- Adav, S.S.; Lee, D.J.; Ren, N.Q. (2007) Biodegradation of pyridine using aerobic granules in the presence of phenol. *Water Res.*, 41: 2903–2910.
- Adav, S.S.; Lee, D.J.; Tay, J.H. (2007) Activity and structure of stored aerobic granules. *Environ. Technol.*, 28: 1227–1235.
- Adav, S.S.; Lee, D.J.; Tay, J.H. (2008) Extracellular polymeric substances and structural stability of aerobic granule. *Water Res.*, 42: 1644–1650.
- Adav, S.S.; Lee, D.J. (2007) Single-culture aerobic granules with *Acinetobacter calcoaceticus*. *Appl. Microbiol. Biotechnol.*, 78: 551–557.
- Adav, S.S.; Lee, D.J. (2008) Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. *J. Hazard. Mater.*, 154: 1120–1126.
- Adav, S.S.; Lee, D.J. (2008) Physiological characterization and interactions of isolates in phenol degrading aerobic granules. *Appl. Microbiol. Biotechnol.*, 78: 899–905.
- Tay, J.H.; Yang, P.; Zhuang, W.Q.; Tay, S.T.L.; Pan, Z.H. (2007) Reactor performance and membrane filtration in aerobic granular sludge membrane bioreactor. *J. Membr. Sci.*, 304: 24–32.
- Jun, Z.; Yang, F.L.; Meng, F.G.; Peng, A.; Di, W. (2007) Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge. *J. Environ. Sci.-China*, 19: 1281–1286.
- Thanh, B.X.; Visvanathan, C.; Sperandio, M.; Ben Aim, R. (2008) Fouling characterization in aerobic granulation coupled baffled membrane separation unit. *J. Membr. Sci.*, 318: 334–339.
- Wang, J.F.; Wang, X.; Zhao, Z.G.; Li, J.W. (2008) Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor. *Appl. Microbiol. Biotechnol.*, 79: 679–685.
- Lee, D.J.; Hsu, Y.H. (1994) Use of capillary suction apparatus for estimating the averaged specific resistance of filtration cake. *J. Chem. Technol. Biotechnol.*, 59: 45–51.
- Chu, C.P.; Lee, D.J. (2004) Multiscale structures of biological flocs. *Chem. Eng. Sci.*, 59: 1875–1883.
- Chen, G.W.; Chang, I.L.; Hung, W.T.; Lee, D.J. (1996) Regimes for zone settling of waste activated sludge. *Water Res.*, 30: 1844–1850.
- Chang, I.L.; Lee, D.J. (1998) Ternary expression stage in biological sludge dewatering. *Water Res.*, 32: 905–914.
- Chen, G.W.; Lin, W.W.; Lee, D.J. (1996) Capillary suction time (CST) as a measure of sludge dewaterability. *Water Sci. Technol.*, 34: 443–448.

35. Lee, D.J.; Lee, S.F. (1995) Measurement of bound water-content in sludge: The use of differential scanning calorimetry (DSC). *J. Chem. Technol. Biotechnol.*, 62: 359–365.
36. Chen, G.W.; Hung, W.T.; Chang, I.L.; Lee, S.F.; Lee, D.J. (1997) Continuous classification of moisture content in waste activated sludge. *J. Envir. Eng. ASCE*, 123: 253–258.
37. Chang, I.L.; Chu, C.P.; Lee, D.J.; Huang, C. (1997) Polymer dose effects on filtration followed by expression of clay slurries. *J. Colloid Interface Sci.*, 185: 335–342.
38. Juang, Y.C.; Lee, D.J.; Lai, J.Y. (2008) Fouling layer on hollow-fibre membrane in aerobic granule membrane bioreactor. *J. Chin. Inst. Chem. Engrs.*, 39: 657–661.